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The dynamics of macroscopically homogeneous sheared suspensions of neutrally
buoyant, non-Brownian spheres is investigated in the limit of vanishingly small
Reynolds numbers using Stokesian dynamics. We show that the complex dynamics
of sheared suspensions can be characterized as a chaotic motion in phase space and
determine the dependence of the largest Lyapunov exponent on the volume fraction φ.
We also offer evidence that the chaotic motion is responsible for the loss of memory in
the evolution of the system and demonstrate this loss of correlation in phase space. The
loss of memory at the microscopic level of individual particles is also shown in terms
of the autocorrelation functions for the two transverse velocity components. Moreover,
a negative correlation in the transverse particle velocities is seen to exist at the lower
concentrations, an effect which we explain on the basis of the dynamics of two isolated
spheres undergoing simple shear. In addition, we calculate the probability distribution
function of the transverse velocity fluctuations and observe, with increasing φ, a
transition from exponential to Gaussian distributions.

The simulations include a non-hydrodynamic repulsive interaction between the
spheres which qualitatively models the effects of surface roughness and other irre-
versible effects, such as residual Brownian displacements, that become particularly
important whenever pairs of spheres are nearly touching. We investigate, for very
dilute suspensions, the effects of such a non-hydrodynamic interparticle force on the
scaling of the particle tracer diffusion coefficients Dy and Dz , respectively, along and
normal to the plane of shear, and show that, when this force is very short-ranged,
both are proportional to φ2 as φ → 0. In contrast, when the range of the non-
hydrodynamic interaction is increased, we observe a crossover in the dependence of
Dy on φ, from φ2 to φ as φ→ 0. We also estimate that a similar crossover exists for
Dz but at a value of φ one order of magnitude lower than that which we were able
to reach in our simulations.

1. Introduction
The phenomenon of shear-induced particle diffusion in non-colloidal suspensions

at vanishingly small Reynolds number has been studied extensively since the work of
Eckstein, Bailey & Shapiro (1977), where it was first suggested that a shear flow causes
the particles to execute random migrations across the streamlines of the ambient flow
producing an effect akin to dispersion. This hypothesis of a self-diffusive motion
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arising from purely viscous hydrodynamic interactions between particles has already
received considerably experimental support (Eckstein et al. 1977; Leighton & Acrivos
1987; Breedveld et al. 1998, 2001a, b). Moreover, as pointed out by Breedveld et
al. (2001b), the origin of this diffusive behaviour is clearly different from the more
familiar Brownian diffusion in colloidal suspensions caused by thermal fluctuations, as
well as turbulent diffusion driven by inertial effects, in that this shear-induced diffusion
is due only to the hydrodynamic interactions between the particles comprising the
suspension. Since, in principle, these interactions constitute a deterministic process,
the question arises as to whether and how it can also be viewed as a diffusion
process. To address this question, it is generally assumed that the arrangement of
neighbouring suspended spheres leads to a time-dependent random event (Eckstein
et al. 1977) in that, upon collision with their closest neighbours, the spheres will
suffer many successive random displacements ultimately leading to a random walk
(Leighton & Acrivos 1987; Zarraga & Leighton 1999). Underlying this description
is the fundamental assumption that collisions between spheres eventually become
statistically independent. Although many theoretical studies have made this strong
assumption in order to calculate the diffusivity of very dilute sheared suspensions
from the displacement produced by a single collision and then averaging over all
initial configurations of the colliding spheres (Acrivos et al. 1992; Wang, Mauri &
Acrivos 1996, 1998; da Cunha & Hinch 1996), the complex dynamics of suspensions
undergoing shear, leading to the loss of correlations in the particle motions, has not
been investigated thus far in much detail.

It is the purpose of the first part of this work to pursue the recent suggestion made
by Marchioro & Acrivos (2001) that the chaotic evolution of sheared suspensions
is responsible for the loss of memory referred to above, and to demonstrate, via
numerical simulations, that the evolution of the system in phase space is indeed
chaotic. Recall that chaotic dynamics, which has been extensively investigated via
numerical simulations in a variety of molecular systems undergoing shear flow (Hoover
1999), is characterized by the sensitivity of the system to initial conditions, as evidenced
by the exponential growth of the separation distance in phase space of two initially
neighbouring trajectories, and that a standard measure of this sensitivity is the largest
Lyapunov exponent (LLE), giving the average rate of this separation distance (Baker
& Gollub 1990, p. 85). We shall therefore investigate the LLE as a function of the
volume fraction φ of the suspensions. We shall also show that the system loses the
memory of its initial state and that its evolution is asymptotically diffusive in phase
space. The loss of memory at the level of a single sphere will also be discussed in
terms of the autocorrelation functions of the two transverse velocity components, and
we will show that, as the concentration is increased and collisions between spheres
become more frequent, the time scale over which the particle transverse velocities
remain correlated is shortened.

Before proceeding, it is instructive to consider the motion of a tracer sphere subject
to purely hydrodynamic interactions with the other spheres in the suspension. As is
well-known, and as a direct consequence of the linearity of the equations of motion at
zero Reynolds number, in any encounter between two perfectly smooth spheres neither
sphere experiences a net lateral displacement, although both may suffer large transient
displacements from their original streamlines (Leal 1992, p. 257). Therefore, for the
tracer to experience a net displacement leading to diffusive motion it is necessary that
it interacts with at least two other spheres. Since the rate of simultaneous interactions
of a tracer sphere with two other spheres is proportional to γφ2 as φ→ 0, where γ is
the shear rate, and since the magnitude of each displacement is proportional to the
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particle radius a, the self-diffusion coefficient should be proportional to γφ2a2, in the
limit of very dilute suspensions (Leighton & Acrivos 1987). The experimental results by
Leighton & Acrivos (1987) observe this scaling for volume fractions 0.05 < φ < 0.40.
However, in any real experiment, suspended particles are not perfectly spherical and,
as the separation between two colliding particles can be very small (less than 10−4

of a particle radius (da Cunha & Hinch 1996)), even very small asperities might
play a significant role during encounters between a pair of spheres. In experiments
performed by Rampall, Smart & Leighton (1997) a roughness of order 10−3 particle
radii was found, and the effect of the asperities on the trajectories of nearly touching
spheres during a collision was determined. In this situation, the interaction of the
tracer particle with another sphere will lead to a net displacement of the tracer from
its original streamline, and therefore, since the rate of interactions with another sphere
is proportional to γφ, the diffusion coefficient is expected to scale as γφa2 as φ→ 0.
This linear dependence of the diffusion coefficient on φ was observed in experiments
performed by Phan & Leighton (1999) and by Zarraga & Leighton (1999). On the
other hand, thus far, the numerical simulations of sheared suspensions have not been
extended to low enough values of φ where one or the other of these two regimes for
the diffusivity would be expected to apply.

In this work, we shall therefore investigate the scaling of the diffusion coefficient
by performing simulations down to values of φ as low as 0.03. The effect of surface
roughness and other possible non-hydrodynamic forces, such as residual Brownian
forces, will be qualitatively modelled by introducing a short-ranged repulsive force
between the spheres. This is similar to the approach taken by Cunha & Hinch (1996)
and by Zarraga & Leighton (1999), where the surface roughness was modelled as
a normal force that prevents the particles from coming closer than a certain fixed
distance. As discussed above, the magnitude and range of the interparticle force
clearly determines which types of collisions, binary or involving more than two
particles, contribute predominantly to the diffusive motion of the spheres, in that, for
a weak force, binary collisions would generate negligible small lateral displacements,
and hence a γφ2a2 regime for the diffusivity would be expected due to the simultaneous
collisions of the tracer particle with two other spheres. However, since at low enough
concentrations the linear regime should eventually become dominant no matter how
small the effect of the interparticle force, we shall investigate this transition from a
quadratic to a linear dependence of the diffusivity on φ as φ→ 0.

As a preliminary, in § 2.1 we shall discuss the effects of such a non-hydrodynamic
interparticle force on the microscopic structure of the suspension, and in particular
its dependence on the strength and range of this force. The motivation for this
preliminary discussion is that the interparticle force determines whether or not binary
collisions will lead to significant transverse displacements, and therefore, determines
the volume fraction at which the crossover in the dependence of Dy and Dz on φ,
from φ2 to φ as φ→ 0, takes place.

2. Simulation method: Stokesian Dynamics
We consider suspensions of non-Brownian particles undergoing shear using the

method of Stokesian Dynamics which was specifically developed for dynamically
simulating the behaviour of many particles suspended in a fluid (Bossis & Brady
1984). A detailed description of the method is given in a review by Brady & Bossis
(1988), hence only a brief discussion is presented here. The method accounts for both
hydrodynamic and non-hydrodynamic forces between the particles. The former are
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computed for spherical particles undergoing simple shear, characterized by a shear rate
γ, in the limit of zero Reynolds number, with the far-field hydrodynamic interactions
between spheres being accounted for in the force–torque–stresslet approximation,
neglecting higher multipole moments (Durlofsky, Brady & Bossis 1987). In simulating
the behaviour of infinite suspensions, periodic boundary conditions in all directions
are imposed, using an adapted version of the Lees–Edwards boundary condition in
the direction of the shear (Allen & Tildesley 1987, p. 242; Brady & Bossis 1985). The
volume V of the cubic cell containing a fixed number of spheres N is related to the
volume fraction φ by φ = (4πa3/3)N/V . Interactions between particles more than a
cell apart from each other cannot be neglected, due to the long-range character of the
hydrodynamic forces, and a lattice sum of the interactions, using the Ewald method,
is implemented (Brady et al. 1988).

A typical simulation described here consists of N = 64 particles sheared over a
period of time t ∼ 100γ−1. The motion of the particles was integrated using a constant
time step ∆t = 10−3γ−1 for all the volume fractions investigated and throughout the
simulations, even during close encounters between particles. The results are averaged
over Nc ∼ 100 different initial configurations using the random phase average method
proposed by Marchioro & Acrivos (2001), in order to avoid spurious time-periodic
fluctuations induced by the time-dependent shape of the simulation cell. Each initial
configuration corresponds to a random distribution of non-overlapping spheres in
the simulation cell. It should be kept in mind that all measurements to be reported
in this work are for strains γt in excess of 50, when the system has reached its steady
or fully developed state.

In what follows, we shall express all the variables in dimensionless units, using the
radius of the spheres a as the characteristic length and γ−1 as the characteristic time.

2.1. Non-hydrodynamic interparticle force

In a suspension of non-Brownian spherical particles undergoing shear at zero
Reynolds number, the separation between spheres can be very small (less than
10−4 of their radius). In this situation, the effects of surface roughness or small Brow-
nian displacements cannot be neglected and a short-ranged, repulsive force is usually
introduced between the spheres to qualitatively model the behaviour of real systems.
The introduction of such a force has the further numerical advantage of preventing
the occurrence of overlaps during close encounters between spheres even though, as
was mentioned above, the time step of the simulation was not reduced.

In this work we use the expression for the repulsive interparticle force, already
well-tested in the context of Stokesian dynamics,

F αβ =
F0

rc

e−ε/rc

1− e−ε/rc
eαβ, (2.1)

where 6πµa2γF αβ , with µ being the viscosity of the suspending liquid, is the force
exerted on sphere α by sphere β, F0 is a dimensionless coefficient reflecting the
magnitude of this force, rc is the characteristic range of the force, ε is the distance of
closest approach between the surfaces of the two spheres divided by a, and eαβ is the
unit vector connecting their centres pointing from β to α.

This interparticle force plays a fundamental role in determining whether or not
binary collisions will lead to significant transverse displacements, which, as discussed
in § 1, ultimately govern the scaling of the diffusion coefficient on φ as φ → 0. As
a preliminary step it is therefore of some interest to characterize the effects of the
interparticle force as its magnitude and range are varied.
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Figure 1. First peak of the pair distribution function g(r) for different values of rc, the characteristic
range of the interparticle force. The position of the peak indicates that, as the range of the repulsive
force increases, so does the minimum separation between particles. The simulations are for φ = 0.10,
N = 64, F0 = 1.0, and Nc = 100. g(r) is measured after each initial random distribution of spheres
is sheared for t ∼ 50 and steady state was reached.

That the two parameters referred to above affect the microstructure of the suspen-
sion is already well-known (Brady & Morris 1997). As mentioned in the introduction,
colliding spheres in a shear flow almost touch one another, with the minimum sep-
aration distance strongly dependent on F αβ . Following Bossis & Brady (1984) we
show this effect in figure 1 in terms of the pair distribution function g(r), defined
as the probability of finding the centre of a second particle at a distance r = |r|
given that there exists a sphere with its origin at r = 0. We see that, as expected,
the minimum separation, and therefore the first peak in g(r), is strongly affected by
the range of the interparticle force in that, as rc increases, the minimum separation
between neighbouring particles also increases.

It is also known that the presence of a repulsive force breaks the angular symmetry
of the microstructure and, in particular, that it destroys the fore–aft symmetry of
the particle trajectories in a simple shear flow (Bossis & Brady 1984; Dratler &
Schowalter 1996). Specifically, again following Bossis & Brady (1984), let us consider
the angular orientation of pairs formed by spheres closer than a certain distance
R, and let us define the probability distribution gR(θ) as the probability density of
finding a pair having a given orientation angle θ (cf. figure 2). It is clear that, as
already shown by Bossis & Brady (1984), particle pairs would be expected to spend
more time oriented on the upstream side, where the repulsive force is balanced by
the shear forces pushing the two particles together, implying that the probability
of finding a pair oriented upstream, 90◦ < θ < 180◦, would be higher than in
the downstream range, 0◦ < θ < 90◦. This is borne out by figure 3, which shows
that the pair distribution function becomes increasingly asymmetric, favouring the
upstream orientation of particle pairs, as the range of the interparticle force is
increased.
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Figure 2. Diagram of a pair of spheres oriented with an angle θ measured from the downstream
side of the reference sphere. Down- and upstream sides of the reference sphere as well as the
distance R defining particle pairs are shown.
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Figure 3. Normalized angular distribution function gR(θ) for pairs of particles. The distance
between the particles is 2 < r < 2.1 (R = 2.1). Different curves correspond to different values of the
interparticle force range rc. All simulation were performed with N = 64, Nc = 100, F0 = 1.0 and
φ = 0.10.

This transition from a nearly symmetric distribution for small ranges of the inter-
particle force (rc ∼ 10−4) to strongly asymmetric distributions as rc is increased has
important consequences for macroscopic measurable quantities such as the scaling of
the diffusion coefficient because the angular asymmetry implies that binary collisions
will lead to net lateral displacements of the colliding spheres. Consequently, in very
dilute suspensions, the diffusion coefficient would be expected to scale as γφa2 with
increasing rc and/or decreasing φ as we shall discuss in more detail in § 6.

3. Chaotic motion and time-reversibility
As mentioned in the introduction, the question as to whether and how diffusive-like

transport arises in a suspension of non-Brownian particles undergoing shear has been



Dynamics of sheared suspensions 313

investigated since the original work by Eckstein et al. (1977). Experimental evidence
strongly suggests that even with vanishingly small inertia effects (zero Reynolds
number) and negligible Brownian and non-hydrodynamic forces, sheared suspensions
exhibit diffusive behaviour (Leighton & Acrivos 1987; Breedveld et al. 1998, 2001a, b).

In an ideal case, where only hydrodynamic forces are present and the Reynolds
number is exactly zero, the motion of the particles is deterministic and reversible due
to the linearity of the governing flow equations, thereby implying that, upon reversing
the direction of flow, the particles should retrace their trajectories. However, in any
physical experiment, there are inherent slight irreversible effects at the microscopic
level, such as residual Brownian motion and surface-roughness effects, which, as is
usually the case in dynamical systems, can have a strong impact on macroscopic
measurable quantities. As an example, let us consider again the loss of fore–aft
symmetry in sheared suspensions.

It can be shown that, on account of the reversibility of the Stokes flow equations,
the pair distribution function of a sheared suspension of perfect spheres should have
fore–aft symmetry. On the other hand, since the original work by Gadala-Maria &
Acrivos (1980), there exists strong experimental evidence that, even at vanishingly
small Reynolds numbers and Brownian force effects, sheared suspensions develop an
anisotropic structure resulting in the loss of fore–aft symmetry (Parisi & Gadala-
Maria 1987; Rampall et al. 1997). This broken symmetry has been attributed to
surface-roughness effects and/or small residual colloidal effects. As mentioned in
§ 2.1 the minimum separation between two colliding spheres in a shear flow can
be less than 10−4 of their radius, so that even a small surface roughness and/or a
non-hydrodynamic force can have an important influence in this case (da Cunha &
Hinch 1996). Thus, such small irreversible effects, which are present at microscopic
scales, have a measurable impact on the macroscopic structure of the suspension and
correspondingly on related macroscopic quantities such as the normal stress difference
in sheared suspensions (Zarraga & Leighton 2001).

Thus far we have discussed the microscopic origin of irreversibility, and its manifes-
tation in macroscopic quantities, which provides a microscopic basis for the existence
of an intrinsically irreversible macroscopic description as given by the diffusion equa-
tion. But, the basic assumption underlying the derivation of such an equation and,
in particular, the validity of a statistical description of the system based on the ran-
domness of the microscopic motion of the particles, is in need of further discussion.
Recall that, in the calculation of the diffusivity in very dilute sheared suspensions, it is
generally assumed that successive collisions between spheres are statistically indepen-
dent, sometimes referred to as molecular chaos and that the distribution of incoming
particles, participating in such collisions, is homogeneous in space and time (Acrivos
et al. 1992; Wang et al. 1996, 1998; da Cunha & Hinch 1996). Furthermore, it has
been suggested that a close connection exists between molecular chaos and dynamical
chaos, according to which stochastic-like behaviour is possible even for determin-
istic mechanical systems (e.g. Gaspard 1998, p. 225; Dorfman 1998). In fact, even
low-dimensional deterministic dynamical systems are known to give rise to diffusive
transport (usually named deterministic diffusion (Gaspard 1998, p. 293)). As was men-
tioned earlier, chaotic systems have the property that any small perturbation in the
state of the system will grow exponentially in time, to the point where the evolution
can no longer be accurately predicted. But, although the hypothesis of chaotic motion
as the basic mechanism responsible for this loss of memory and for that matter, as
the cause of the phenomenon of shear-induced diffusion, has been suggested in the
context of sheared suspensions by Marchioro & Acrivos (2001) and has been sup-
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ported by their numerical simulations showing irreversible behaviour upon reversal
in the direction of the shear, to date the presence of chaos in a sheared suspension
has not been examined. We shall therefore numerically investigate the presence of
chaotic motion in sheared suspensions by evaluating the largest Lyapunov exponent,
which is a standard measure of chaoticity (Schuster 1989, p. 24).

It is worth mentioning here that we do not wish to imply that diffusive motion
cannot possibly operate in the purely hydrodynamic case, and that diffusion owes
its existence to the unavoidable presence of small microscopic irreversible forces. In
fact, the presence of chaotic motion, which we shall presently demonstrate, strongly
suggests that, even in the absence of such effects, diffusive behaviour should still arise
due to the loss of correlation in the particle motions.

3.1. Largest Lyapunov exponent

In a sheared suspension at zero Reynolds number, the state of the system is fully
determined by the coordinates of all the particles and, therefore, a sheared suspension
consisting of N particles can be considered as a dynamical system in a 3N-dimensional
phase space. A point of this phase space Γ is given by 3N particle coordinates and
the Lyapunov exponents measure the average rate of separation of two initially
neighbouring trajectories. Thus, given two states of the system separated by a small
distance d(0) in phase space, the largest Lyapunov exponent (LLE) for that state,
which controls the exponential divergence of initially close trajectories, is formally
defined as

λ = lim
t→∞ lim

d(0)→0

[
1

t
ln
d(t)

d(0)

]
, (3.1)

with d(t) being the separation distance in phase space at time t.
In order to obtain a numerical estimate of the LLE for the steady state of a

sheared suspension, we compute the ensemble-averaged LLE used in ergodic systems
(Gaspard 1998, pp. 144, 247) by generating a number Nc of initial configurations
Γs(0) in a steady-state flow starting from a random configuration of spheres Γi, and
then evolving the system for a sufficiently long time (typically for strains t ∼ 50).
For each of these configurations we then introduce a slightly perturbed state Γp(0),

by adding a random displacement d̄ to Γs(0) (see figure 4). In order to generate
a random perturbation in phase space d̄, with constant magnitude |d̄| = d(0), we
initially construct a 3N-dimensional vector ξ̄, where each component ξi is a random
variable with uniform distribution in the range −1 < ξi < 1. Then, we renormalize
this vector to obtain the desired initial magnitude of the perturbation, d̄ = d(0)(ξ̄/|ξ̄|).
Thus, a random displacement d̄ in phase space corresponds, on average, to a random
perturbation, of order d(0)/

√
N, to the position of each particle.

Next, we follow the evolution of these two independent systems and we compute
at each time step the distance in phase space given by

d(t) = ‖Γs(t)− Γp(t)‖ =

(
N∑
i=1

[xis(t)− xip(t)]2

)1/2

, (3.2)

where the indices s and p refer to the unperturbed and perturbed initial states (see
figure 4). (Note that, even though the affine shearing motion of the spheres is not
removed and its contribution dominates the initial growth of the separation distance
in phase space, the exponential growth should eventually become dominant at long
times.) Although, for a single realization, d(t) will depend on both initial states Γs(0)
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Figure 4. Schematic representation of the generation of initially close trajectories in a stationary
state. Starting from a random configuration of hard spheres Γi we follow the evolution of the
system towards steady state (t ∼ 50). Once in steady state, we generate a slightly perturbed state Γp
by adding a small random displacement to each particle. The initial separation in phase space is
d(0). Then we follow the evolution of the two systems by computing the distance at each time d(t).

and Γp(0), after some transient behaviour, we should certainly expect an exponential
separation with large fluctuations due to the details of the dynamics of the system.
This is illustrated in figure 5. In order to compute the LLE accurately, we therefore
first average over Nc different initial conditions in phase space, then take the logarithm
of the mean exponential separation,

∆Γ (t) = ln(〈d(t)〉Γ ) = ln

(
1

Nc

Nc∑
k=1

{d(t)}k
)

(3.3)

and identify λΓ (the largest Lyapunov exponent) as the slope of ∆Γ (t) in the region
of its linear growth.†

Analogously, we can define a distance in the phase space of the transverse velocity
components of all the particles,

∆v(t) = ln

 1

Nc

Nc∑
k=1


(

N∑
i=1

[vis(t)− vip(t)]2

)1/2

k

 . (3.4)

† The method used in this work to compute the largest Lyapunov exponent differs from that
described by Benettin, Galgani & Strelcyn (1976) and used frequently in that, instead of averaging
over different realizations (ensemble average), Benettin et al. (1976) reset the distance between
trajectories to the initial value after fixed intervals of time τ and compute the Lyapunov exponent
from the average distance reached before the rescaling procedure (time average). However, both
methods should give the same value of λ if the system is ergodic, because in that case, the
time-average of any dynamical quantity is equal to its ensemble average over a large number of
realizations Nc (Eckmann & Ruelle 1985). The main advantage of our method is that it allows
us to compute the evolution of all the initial configurations simultaneously, which reduces the
computational time enormously, compared to a single very long simulation, when the computations
are performed using a cluster of processors.
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Figure 5. Separation, in log-linear scale, of initially close trajectories in phase space d(t) for different
initial states of the unperturbed system. The results correspond to simulations with N = 64, F0 = 1.0,
rc = 10−4, and φ = 0.35.

However, as d(t) grows exponentially, so does a generic projection in phase space (or
a distance measured with any particular metric). Moreover, since the separation is
dominated by the exponential growth with the LLE, and the velocity is the derivative
of the position of the particles, one would expect the Lyapunov exponent λv , as
obtained from the slope of ∆v(t), to be the same as that measured from ∆Γ (t), i.e.
λ = λΓ = λv .

In figure 6 we show the time evolution of ∆Γ (t) and ∆v(t) for a sheared suspen-
sion with N = 64 particles, volume fraction φ = 0.35, interparticle force F0 = 1.0
and characteristic range rc = 10−4. The distance d(t) was averaged over Nc = 100
different initial conditions. The initial distance in phase space Γ is d(0) = 10−4, which
corresponds to a random displacement ∼ 10−5 added to the position of each parti-
cle. Simulations using a smaller initial displacement give a similar behaviour with a
variation in the measured Lyapunov exponent of less than 5%. We also performed
simulations with rc = 10−3 as well as with F0 = 0.1, but, in all cases, the variations
between the LLEs were within 10%. However, larger changes should be expected
in the value of the LLE for larger variations in the range or the strength of the
interparticle force. Finally, the Lyapunov exponent calculated from ∆Γ (t) and from
∆v(t) is, as expected, the same, within the error in its determination.

In figure 6 three different regimes can be directly observed: a short initial transient
behaviour, a large linear growth corresponding to the exponential divergence in
phase space and a deviation from the linear growth at long times, corresponding to
an asymptotic saturation distance in the transverse velocity phase space.

There are two related effects that might cause the short-time transient behaviour. On
one hand, many-body nonlinear effects only come into play after at least one collision
has taken place, and we can therefore relate the transient time to a characteristic time
between collisions. However, the definition of such a characteristic time is not clear,
given the fact that the hydrodynamic forces are long-ranged. On the other hand, this
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Figure 6. Logarithm of the mean separation of initially close trajectories in phase space as a function
of time. (a) Coordinate phase space, (b) transverse velocity phase space. The results correspond to
a sheared suspension of N = 64 particles, volume fraction φ = 0.35, interparticle force F0 = 1.0,
characteristic range rc = 10−4, and Nc = 100. The solid line corresponds to a linear fit with
(a) λ = 0.55 ± 0.04, (b) λ = 0.56 ± 0.04. The dashed line in (b) is the asymptotic value of ∆v as
t→∞ given by (3.5).

transition might correspond to the deformation, due to the shear flow, of the initial
cloud of particles surrounding a test sphere. In our simulations we found that this
transient time decreases with increasing concentration, which is consistent with both
effects.

In the simulations it was observed that the distance in the transverse velocity phase
space saturates. This is because the definition of the distance in the transverse velocity
phase space does not include the velocity component along the direction of the flow,
hence, two randomly chosen systems in steady state will have a finite mean distance.
In fact, the saturation distance can be estimated by assuming that the perturbed and
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unperturbed systems eventually become completely uncorrelated. In this case, ∆∞v
becomes the average distance between two independent states,

∆∞v = ln[〈[N〈(vis − vip)2〉N]1/2〉Γ ] ≈ ln[2N(σ2
vy + σ2

vz)]
1/2, (3.5)

where σ2
vi is the variance in the ith component of the velocity, and therefore the satu-

ration constant can be computed in the steady state, independently of the evolution.
For the simulation shown in figure 6, the variances in the velocity components are
σ2
vy = 0.20 and σ2

vz = 0.07 respectively, giving a saturation value ∆∞v = 1.77 which is
in excellent agreement with the observed saturation distance, as shown by the dashed
line in figure 6. On the other hand, as the system loses its memory of the initial
state and the distance in the transverse velocity phase space saturates, the separation
in coordinate phase space should deviate from the exponential growth, as can be
observed in figure 6. In fact, the loss of memory of the initial state of the system leads
to an asymptotic diffusive behaviour in phase space.

3.2. Dependence of the Lyapunov exponent on the concentration

We investigated the dependence of the largest Lyapunov exponent on the volume
fraction of the suspension. As the concentration increases, the frequency of collisions
among the spheres also increases, hence we should expect a monotonic increase of the
LLE with φ. In figure 7 we show the numerical values of the LLE as a function of
φ. It can be seen that the stochasticity of the system increases with concentration, as
measured by λ. An almost linear dependence can be also observed, with the surprising
fact that the LLE appears to remain finite as φ→ 0. We remark parenthetically that,
in kinetic theory, the Lyapunov exponent can be shown to be a linear function
of the frequency of collisions (Gaspard 1998, p. 8; Dorfman 1998), and that in a
sheared suspension, the frequency of collisions is roughly ν ∼ φ. However, due to the
long-range interactions between the particles, it is not clear that the same relation
between the LLE and ν will continue to apply in the case of sheared suspensions; this
then is the main difference between the present situation and kinetic theory, which
is based on the existence of short-range interactions between the particles. In fact,
the presence of these long-range hydrodynamic forces might be responsible for the
curious behaviour of λ at small volume fractions seen in figure 7. Unfortunately, the
observed initial transient time increases as the concentration becomes smaller, thereby
limiting the range of concentrations which we were able to investigate to φ > 0.01.
Thus, the functional dependence of the LLE on φ in the dilute limit remains an open
problem.

4. Transverse velocity autocorrelation function
In the previous section we discussed the global loss of memory of a system in phase

space when its initial state is slightly perturbed. At the level of individual particles
this asymptotic stochastic motion is also present, and could be studied by examining
whether the velocity of a particle decorrelates from its initial value. The average
correlations between the velocity of a particle at two different times are measured via
the velocity autocorrelation function Kα(t) defined by

Kα(t) = 〈vα(0)vα(t)〉/σ2
vα

=

[
1

Nc

Nc∑
k=1

{
1

N

N∑
i=1

viα(0)viα(t)

}
k

]/[
1

Nc

Nc∑
k=1

{
1

N

N∑
i=1

viα(0)viα(0)

}
k

]
, (4.1)
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Figure 7. Dependence of the Lyapunov exponent on the volume fraction. The results correspond
to numerical simulations for N = 64, Nc = 100, F0 = 1.0 and rc = 10−4. λΓ is computed from the
separation growth in coordinates phase space, and λv using the transverse velocity phase space.

where α refers to the transverse velocity component being measured, and τvα its time
integral,

τvα =
1

σ2
vα

∫ ∞
0

dt〈vα(0)vα(t)〉 =

∫ ∞
0

dtKα(t). (4.2)

The importance of these functions in computer simulations is well known (Allen
& Tildesley 1987, p. 58) and, in particular, the velocity autocorrelation function is
related to the diffusion coefficient through

Dαα =

∫ ∞
0

〈vα(0)vα(t)〉 dt = σ2
vα
τvα . (4.3)

This expression has been used in the context of suspensions by Nicolai et al. (1995)
to determine the diffusivity of sedimenting non-Brownian spheres, and by Marchioro
& Acrivos (2001) to measure the shear-induced self-diffusivities.

In figure 8 we show the computed velocity autocorrelation functions for both
transverse velocity components, Ky(t) and Kz(t), for volume fractions ranging between
0.05 < φ < 0.45, where y and z are, respectively, along and normal to the plane of
shear. In all cases, the transverse velocities become uncorrelated at long times, around
t = 10 for the lowest volume fraction, and hence, for ∆t beyond about 10, the
transverse displacement of an individual particle should be describable in terms of a
random walk.

It can also be observed that, except at high concentrations (φ ≈ 0.45), the auto-
correlation function becomes negative over a range of several time units. Note that
a similar behaviour for the velocity autocorrelation function was found in molecular
dynamics simulations of simple liquids (Alder & Wainwright 1958; Rahman 1964),
and was explained in terms of the backscattering by neighbouring particles at high
densities (Alder & Wainwright 1967, 1970). In fact, the negative correlation in velocity
suggests that, on average, individual particles reverse their velocity, typically after a
time interval of order 1 according to our simulations. This result can be understood in
terms of the motion of a colliding pair of particles in a linear shear flow. Specifically,
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Figure 8. Transverse velocity autocorrelation functions in y and z. The simulations are for
N = 64, Nc = 100, F0 = 1.0 and rc = 10−4.

as was already mentioned in the introduction, when two isolated spheres collide, the
net displacement in both transverse directions is zero, as a consequence of the re-
versibility of the creeping flow equations and the symmetry of the problem. However,
the instantaneous deviation in the velocity of the spheres during the encounter is
not zero and clearly anti-correlated, since the net displacement should integrate to
zero. Thus, encounters between two isolated spheres in linear shear flow give rise
to a negative correlation in the velocity fluctuations. On the other hand, encounters
involving three or more particles will, in general, not be symmetric and the parti-
cles will experience a net displacement from their original streamlines (Wang et al.
1996). Therefore, in general, the interaction among more than two particles does not
necessarily contribute to a negative autocorrelation in the transverse velocity.
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Figure 9. Average number of particles with their transverse velocities reversed from their initial
direction. Different curves corresponds to different components of the velocity as indicated. The
simulations are for N = 64, Nc = 100, F0 = 1.0, rc = 10−4 and φ = 0.35.

The previous discussion not only explains the observed negative correlation but also
the fact that it becomes more pronounced with decreasing volume fraction and that,
as φ→ 0, it seems to converge to an asymptotic function dominated by two-particle
encounters.

At high concentrations we see that both velocity correlation functions decay rapidly
to zero and show very little structure. This effect might be attributed to ‘screening’: i.e.
each of the particles alters the ambient velocity field, and when these perturbations
have a high spatial density and a rapid time dependence, their effect is to produce a
strongly fluctuating background flow which tends to decorrelate the velocity of any
particle from its earlier value. An analogous effect is present in porous media flows,
which could be thought of as an extreme case of a suspension so concentrated as
to be immobile. Here, a static force perturbation in a fluid-saturated porous medium
decays exponentially with distance (as seen from the Brinkman equation (Brinkman
1947; Durlofsky & Brady 1987), for example), in contrast to the power-law decay in
more dilute mobile suspensions.

In figure 9 we present the time evolution of the average fraction of particles having
their initial velocities reversed,

n(t) =

[
1−

〈
vα(0)vα(t)

|vα(0)vα(t)|
〉]/

2. (4.4)

It can be seen that, on average, more than half the particles have both transverse
velocity components reversed at intermediate times (t ∼ 1) for the indicated values of
F0, rc and φ. These results are consistent with our previous discussion regarding the
origin of the negative autocorrelation.

Finally, let us discuss some of the important consequences of the negative correla-
tions in the transverse velocity and their origin. First, it is clear that the integral time
scale given by equation (4.2) is different from the autocorrelation time. (A correlation
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Figure 10. τvy and τvz given by equation (4.2), as a function of the volume fraction.

The simulations are for N = 64, Nc = 100, F0 = 1.0, and rc = 10−4.

time defined through equation (4.2) implicitly assumes an exponentially decaying
autocorrelation function, as is the case for any Gauss–Markov process (van Kampen
1987, p. 81.).) This is illustrated in figure 10, where we depict the values for τvy and τvz ,
obtained using (4.2), as a function of the volume fraction. Of course, given the limited
accuracy in the computation of the integral (4.2), the values of τvy and τvz shown in
figure 10 are subject to large relative errors when φ < 0.10. It is clear that the integral
time scale measured from (4.2) fails to capture the actual time scale underlying the
loss of correlation in the particle velocities in that it increases with concentration,
contrary to the fact that the actual time scale for the correlations becomes shorter as
the concentration and the rate of collisions between the particles increases.

The same difficulty is encountered when the diffusion coefficient is evaluated by
integrating the velocity autocorrelation function. As previously discussed, the motion
generated by binary collisions is not diffusive and thus, in view of equation (4.3), the
integral of the autocorrelation function should vanish in the limit φ → 0. This is
born out by the results shown in figure 10 where it can be seen that both τvy and τvz
approach zero with decreasing volume fraction. Thus, the leading contribution to the
diffusivity comes from small changes in the autocorrelation function which become
increasingly smaller with decreasing particle volume fraction.

5. Velocity fluctuations
In the previous sections we discussed the loss of correlation in the particle velocities

and how the integral time scale is related to the diffusivity. On the other hand, as
is clear from equation (4.3), the magnitude of the velocity fluctuations also plays
an important role in determining the particle diffusivity. Understanding velocity
fluctuations in the presence of long-range hydrodynamic interactions is a longstanding
problem, and has been recurrently studied in the context of sedimenting suspensions
(Brenner & Mucha 2001). In this section we shall present numerical results concerning
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not only the magnitude of the velocity fluctuations given by σv but also the whole
probability distribution function (p.d.f.) of the velocity fluctuations, for different
volume fractions.

Numerical simulations clearly suffer from two limitations, which become of partic-
ular importance when computing velocity fluctuations: the small number of particles
in the simulations and the necessary approximations to the hydrodynamic forces
(Brady & Bossis 1988). However, we shall show that the functional form of the
p.d.f.s undergoes a clear transition, from an exponential to a Gaussian distribution
as the volume fraction is increased, which is not sensitive to the number of particles.
Moreover, this feature could be measured experimentally thereby providing a useful
test for the approximations involved in the hydrodynamic interactions which have
been used in constructing the Stokesian dynamics code.

In figure 11 we show the p.d.f. of the velocity fluctuations in the direction of the
shear P (vy) in a log-linear plot, obtained at two different volume fractions, φ = 0.05
and φ = 0.35, and using a different number of particles in the simulations. It can
be seen that, as previously stated, the distribution of velocities is insensitive to the
number of particles, at least as far as its functional form is concerned.

In figure 12 we compare the p.d.f.s at low and high volume fractions in a log-linear
plot. Clearly, both P (vy) and P (vz) become not only broader as the concentration
increases but noticeably change their shape. In figure 12(a) we show that, at low
volume fractions (φ = 0.05), P (vy) is described well by an exponential distribution,
P (vy) ∝ exp(−11.4|vy|) but that at a large volume fraction, φ = 0.35, a Gaussian
distribution accurately fits the numerical results, P (vy) ∝ exp(−2.41v2

y). A similar
behaviour is observed in P (vz), as shown in figure 12(b) in that, at low volume
fractions, the p.d.f. is approximated well by an exponential distribution P (vz) ∝
exp(−26.3|vz|), but at large concentrations neither a Gaussian nor an exponential
distribution accurately fits the numerical results over the whole range of velocities.
However, we show that, for small velocity fluctuations, the distribution is Gaussian
(dashed line; P (vz) ∝ exp(−7.76v2

z )), whereas large fluctuations are better described
by an exponential distribution (dotted line; P (vz) ∝ exp(−7.57|vz|)).

The development of exponential tails is a common feature of many complex physical
systems, but it is not yet understood why it appears so often (Kadanoff 2001). Another
example with suspensions of non-colloidal particles where this transition is observed,
but in the opposite direction, occurs in fluidization, where the velocity fluctuation
distributions vary from Gaussian to exponential as the particle concentration increases
(Rouyer, Martin & Salin 1999).

We believe that in our case this transition in the p.d.f. of the velocity fluctuations
towards a Gaussian distribution is due to the dominant role played by lubrication
forces at the high concentrations. Recall that, given their short-range character, lubri-
cation forces are essentially two-body interactions and are accounted for in a pairwise
additive way in the simulation method. On the other hand, again in the simula-
tion method, many-body long-range hydrodynamic interactions are accounted for by
means of the far-field approximation (a detailed discussion of the approximations
involved in the Stokesian dynamics method can be found elsewhere (Durlofsky et
al. 1987; Brady & Bossis 1988; Brady et al. 1988; Ichiki & Brady 2001)). Therefore,
the random addition of lubrication forces, generated from spheres in close proximity
to one another, is the dominant contribution at high concentrations, and would be
expected to yield a Gaussian distribution. Note also that the hydrodynamic forces
inhibit the relative motion of the particles as they approach one another and there-
fore would prevent large fluctuations in the velocity from occurring, consistent with
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Figure 11. Probability density function of the velocity fluctuations in the direction of the shear
P (vy) for two different volume fractions, (a) φ = 0.05 and (b) φ = 0.35, in log-linear scale. Different
curves correspond to different number of particles in the numerical simulations. The simulations
are for N = 64, Nc = 100, F0 = 1.0 and rc = 10−4.

the range in vz where a Gaussian distribution properly describes the corresponding
p.d.f.s. On the contrary, at low concentrations, lubrication forces becomes negligible
and therefore long-range many-body interactions determine the fluctuations in veloc-
ity. In this case, our results show an exponential distribution. It is clear then that a
comparison with experimental results would provide another test of the numerical
method and of the approximations that are involved in the simulations.

An alternative view of the distinction between Gaussian and exponential velocity
distributions may be offered by analogy with turbulence. Specifically, in boundary
layer flows, one observes that the p.d.f. of vorticity is Gaussian at low Reynolds
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Figure 12. Probability density function of the velocity fluctuations in both transverse directions,
(a) P (vy) and (b) P (vz), for two different volume fractions φ = 0.05 and φ = 0.35, in log-linear
scale. See the text for a discussion of the different distributions used to fit the numerical data (solid
and dashed lines). The simulations are for N = 64, Nc = 100, F0 = 1.0 and rc = 10−4.

numbers, but develops exponential tails at the very high Reynolds numbers charac-
teristic of atmospheric flows (Fan 1991). Similarly (perhaps), the p.d.f. of temperature
fluctuations in thermal convection exhibits a transition from Gaussian to exponential
as the Rayleigh number increases (Sano, Wu & Libchaber 1989; Wu 1991). In both
cases, the transition is gradual rather than abrupt, and the increase of Reynolds
or Rayleigh number is accompanied by the development of organized large-scale
coherent structures in the flow (Frisch 1995, p. 100). Since one normally associates
Gaussian p.d.f.s with the addition of uncorrelated random variables, it is natural to
relate the transition to the more slowly decaying exponential p.d.f.s to the appearance
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of correlated long-range structures, such as plumes in thermal convection (Kadanoff
2001). In the case of suspensions, inverse concentration is analogous to the Reynolds
or Rayleigh number in the sense that a large value of the parameter is associated with
long-range correlations, as we have seen in the discussion of screening in § 4. A com-
mon feature in these three situations is that, at low values of the appropriate control
parameter, the motion is relatively uncorrelated and the fluctuations are Gaussian
while, at high values, the motion is organized and the fluctuations are more persis-
tent and exponentially distributed. We wish to emphasize though that the previous
discussion implicitly assumes that, over the range of concentrations which we have
explored, i.e. for φ up to φ = 0.35, long-range correlated structures, such as clusters
of spheres, do not form. Otherwise, a highly correlated motion of the spheres might
be induced and a Gaussian distribution would not be expected to arise. It appears
likely that our larger concentration (φ = 0.35) is not high enough for a significant
fraction of the suspension to have clusters and, furthermore, the introduction of a
repulsive force between the spheres would have hindered the formation of any such
clusters in the simulations, as has been shown in previous studies (Brady & Bossis
1985, 1988; Dratler & Schowalter 1996).

6. Shear-induced self-diffusion at low concentrations
In § 3 we discussed how stochastic (diffusive-like) transport arises in the deterministic

dynamics of sheared suspensions, due to the chaotic evolution in phase space and, in
§ 4, we showed the presence of a stochastic motion at the individual level of a single
sphere by studying the loss of correlation in the transverse particle velocities which
leads to a random diffusive motion of single particles. Finally, in figure 13, we now
show that the mean-square displacement of a single particle becomes diffusive after a
time approximately equal to the characteristic time after which correlations in particle
velocity are lost.

We also remarked in § 1 and § 2.1 that, in order to obtain a diffusive motion
from purely hydrodynamic interactions, collisions between at least three particles are
necessary while, on the contrary, in the presence of non-hydrodynamic forces such
as the interparticle repulsive force introduced in § 2.1, binary collisions alone lead to
diffusive motion. This fact gives rise to different scaling relations for the diffusivity
depending on the relative importance of the interparticle force and the hydrodynamic
forces. Let the diffusion coefficient in the pure hydrodynamic limit be denoted by
Dh, and the contribution to the diffusivity in the presence of non-hydrodynamic
forces by Dn−h. As already mentioned in § 1, since the hydrodynamic contribution
Dh arises from collisions between three or more particles, and the rate at which a
given sphere interacts with two other spheres is proportional to γφ2 in the limit of
low volume fractions, Dh should scale as γφ2a2 as φ→ 0 while Dn−h ∝ f(F0, rc)γφa

2,
where f(F0, rc) should be an increasing function of the interparticle force magnitude
F0, and of the range rc. Then, when interparticle forces are negligible, the diffusion
coefficient D will be dominated by the hydrodynamic contribution and should scale
as γφ2a2. On the other hand, below a certain concentration, the value of which
depends on the magnitude and range of the interparticle force, the contribution to
the random displacements of the spheres originating from binary collisions becomes
dominant and a linear dependence of D on the volume fraction should be expected,
i.e. D ∼ Dn−h ∝ γφa2.

Let us first investigate the case when the range of the interparticle force is very
small. In figure 14 we present, in a log-log plot, Dy made dimensionless by γa2, as a
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Figure 13. Mean-square displacement of a single particle, averaged over all the N = 64 particles in
the suspension and over Nc = 100 different realizations, as a function of time for different volume
fractions. The magnitude of the interparticle force is F0 = 1 and the characteristic range rc = 10−4;
(a) corresponds to large concentrations and (b) to the lowest concentrations we measured. The solid
lines correspond to a least-squares fit of the mean-square displacement in the region of its linear
growth, t > 10.

function of the volume fraction where, in all cases, the diffusion coefficient is obtained
from the slope of the mean-square displacement in the region of its linear growth,
as shown in figure 13. In these numerical simulations the characteristic range of the
interparticle force was set to rc = 10−4 and F0 = 1.0. It can be observed that at
low volume fractions, a quadratic dependence of Dy on φ is obtained, as one would
have expected when the effect of the non-hydrodynamic force on the diffusivity is
negligible. We also compare in figure 14 the numerical results with the theoretical
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Figure 14. Dimensionless diffusion coefficient in the direction of the shear Dy as a function of the
volume fraction in log-log scale, computed from the mean-square displacement of the particles as
shown in figure 13. The solid line correspond to the theoretical result calculated by Wang et al.
(1996), in the absence of non-hydrodynamic forces. The simulations are for N = 64, Nc = 100,
F0 = 1.0 and rc = 10−4.

values obtained by Wang et al. (1996), who evaluated the diffusion coefficient by
computing the mean-square displacement of a test sphere over all possible encounters
with two other spheres in the absence of non-hydrodynamic forces and found that
Dy = 0.11φ2, in excellent agreement with our fitted value Dy = (0.11 ± 0.02)φ2.
However, it should be kept in mind that the diffusion coefficients reported here
are from simulations using only 64 particles, a number which may not be large
enough for an accurate comparison with other values of Dy obtained theoretically or
experimentally.

In figure 15 we present the dependence of Dz on φ. In this case, a quadratic
dependence is also found but the theoretical values calculated by Wang et al. (1996)
Dz = 0.005φ2 are much smaller than that given by the fit to our numerical results Dz =
(0.07 ± 0.007)φ2. However, let us note that the anisotropy found in our simulations
for the self-diffusion coefficient, Dy/Dz ∼ 1.5, is in agreement with the experimental
results of Phan & Leighton (1999) recently confirmed by Breedveld et al. (2001a).

Let us now consider the case in which the interparticle force contributes signif-
icantly to the diffusion coefficient. To this end, we performed simulations with the
characteristic range of the interparticle force increased 1000 times relative to its pre-
vious value rc = 10−4 while the strength of the force was kept constant, F0 = 1.0.
In figure 16 we present the new numerical results for the diffusion coefficient in the
direction of shear, as a function of the volume fraction. For comparison we also
show the previous results of figure 14. It is clear that the diffusivity deviates from the
values found previously and becomes larger than before at very low concentrations.
As φ → 0, a linear dependence on φ is found to accurately fit the numerical data,
giving Dy = (7.6± 1.3)× 10−3φ.

In figure 17 the diffusion coefficient in the vorticity plane is compared for the same
two values of the characteristic range, rc = 10−4 and rc = 10−1, as a function of φ.
In this case, the interparticle force is not strong enough and the concentration not
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Figure 15. Dimensionless diffusion coefficient Dz as a function of the volume fraction in log-log
scale, computed from the mean-square displacement of the particles as shown in figure 13. The solid
line corresponds to a fit Dz = 0.07φ2. The dashed line corresponds to the result obtained by Wang
et al. (1996), Dz = 0.005φ2. The simulations are for N = 64, Nc = 100, F0 = 1.0 and rc = 10−4.
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Figure 16. Dimensionless diffusion coefficient in the plane of shear Dy as a function of the volume
fraction φ in log-log scale, computed from the mean-square displacement of the particles as shown
in figure 13. Open circles corresponds to short-ranged interparticle forces rc = 10−4, while solid
circles correspond to a longer range rc = 10−1. The solid line is a best fit with a linear dependence
on φ: Dy = (7.6 ± 1.3) × 10−3φ. The dashed line corresponds to the result by Wang et al. (1996).
The simulations are for N = 64, Nc = 100, and F0 = 1.0.

low enough for the linear regime to be observed. The numerical values for Dy and Dz
which we obtained for the two different ranges of the interparticle forces and for the
several different concentrations are summarized in table 1.

It is important to note that the largest range of the interparticle force rc = 0.1
is clearly too large to be considered as representing residual Brownian forces or
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Figure 17. Dimensionless diffusion coefficient perpendicular to the plane of shear Dz as a function
of the volume fraction φ in log-log scale, computed from the mean-square displacement of the
particles as shown in figure 13. Open and solid circles corresponds to different characteristic range
of the interparticle force, rc = 10−4 and rc = 10−1 respectively. The solid line is the best fit with a
quadratic dependence on φ, Dz = (0.07± 0.007)φ2. The simulations are for N = 64, Nc = 100, and
F0 = 1.0.

rc = 10−4 rc = 10−1

φ Dy Dz Dy Dz

0.03 (10.0± 3.4)× 10−5 (7.3± 1.0)× 10−5 (2.2± 0.3)× 10−4 (6.8± 0.8)× 10−5

0.05 (2.4± 0.5)× 10−4 (1.8± 0.2)× 10−4 (3.7± 0.3)× 10−4 (1.5± 0.1)× 10−4

0.10 (9.8± 0.9)× 10−4 (7.1± 0.3)× 10−4 (7.9± 0.6)× 10−4 (5.1± 0.3)× 10−4

0.15 (2.6± 0.1)× 10−3 (1.45± 0.05)× 10−3 (2.3± 0.1)× 10−3 (1.45± 0.05)× 10−3

0.25 (1.18± 0.03)× 10−2 (4.8± 0.1)× 10−3

0.35 (3.6± 0.1)× 10−2 (1.4± 0.03)× 10−2

0.45 (4.6± 0.1)× 10−2 (3.25± 0.05)× 10−2

Table 1. Values of the self-diffusivities evaluated for two different ranges of the interparticle force
rc = 10−4 and rc = 10−1. The number of particles in the unit cell is in all cases N = 64.

electrostatic repulsion (Foss & Brady 2000). However, this force might resemble the
effect of particle roughness. By means of numerical simulations, da Cunha & Hinch
(1996) and recently Zarraga & Leighton (2001), showed that particle roughness leads
to a diffusivity proportional to the volume fraction. These authors modelled particle
roughness by a normal force which prevents the particles from coming closer than a
minimum dimensionless separation 2 + ε between the centres of the two spheres. As a
crude approximation, we might estimate the magnitude of the roughness represented
by our interparticle force as its characteristic range rc, i.e. ε ∼ rc ∼ 0.1 in our
simulations. For ε ∼ 0.1 da Cunha & Hinch (1996) and Zarraga & Leighton (2001)
found that Dy/φ ∼ 0.02, which is larger than our fitted value Dy/φ ∼ (0.0076±0.0013).
However, as shown in figure 18, in our simulations, pairs of particles are allowed to
come closer than rc. This is because at r = rc the interparticle force is not infinite
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Figure 18. Pair distribution function g(r). The characteristic range is rc = 0.1.
N = 64, φ = 0.10, F0 = 1.0, and Nc = 100.

as in the analysis by da Cunha & Hinch (1996) and Zarraga & Leighton (2001). On
the other hand, if we consider the observed minimum distance between spheres as
the effective roughness represented by our repulsive force then ε ∼ 0.01 and from da
Cunha & Hinch (1996) Dy/φ ∼ 0.006, which is now in fairly good agreement with our
fitted value. A linear behaviour Dy ∝ φ was also found in experiments by Biemfohr,
Looby & Leighton (1993) and Zarraga & Leighton (1999). However, the diffusion
coefficient reported in these experiments was substantially larger than that obtained
by means of numerical simulations (Dy/φ ∼ 0.03 compared to Dy/φ ∼ 0.005 from
the numerical simulations for ε ∼ 10−3).

On the other hand, a linear dependence of the diffusion coefficient on φ is not
observed for Dz . This is also consistent with the results obtained by da Cunha & Hinch
(1996). Assuming again that the effective roughness represented by our repulsive force
is ε ∼ 0.01, then da Cunha & Hinch (1996) found that Dz/φ ∼ 2.5 × 10−4 and a
simple calculation shows that in order to observe this regime the concentration would
have had to be at least 10 times smaller than our lower limit, that is φ 6 0.003.

7. Summary
The complex dynamics of homogeneous sheared suspensions of monodisperse,

neutrally buoyant, non-Brownian spheres at zero Reynolds number was investigated
by means of numerical simulations using Stokesian dynamics. Starting from a large
number of independent initial configurations (Nc = 100), the evolution of typically
N = 64 spheres undergoing simple linear shear was simulated during a time t ∼ 100,
which was sufficiently long to allow us to study the dynamics of the system in steady
state. In addition to the hydrodynamic interactions between spheres, the simulations
included a short-ranged repulsive interparticle force that qualitatively models the
effects of surface roughness and Brownian forces, both of which play an important
role when neighbouring spheres nearly touch one another.
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We began by recalling some of the well-known effects of the non-hydrodynamic
interaction on the microscopic structure of sheared suspensions (Bossis & Brady
1984; Rampall et al. 1997). We showed that the location of the first peak of the pair
distribution function strongly depends on the range of the interparticle force rc in that,
as rc is increased, the minimum separation between neighbouring spheres increases
significantly. We also discussed how the angular distribution of pairs depends on
this force, showing that, as the range of the interparticle force is increased, the pair
distribution function becomes increasingly asymmetric, with fewer pairs being oriented
downstream than upstream. This asymmetry implies the loss of time reversibility and
therefore identifies the interparticle force as its microscopic origin.

The dynamics in phase space of sheared suspensions was shown to be chaotic over
the whole range of volume fractions investigated, 0.01 < φ < 0.35, with the largest
Lyapunov exponent increasing linearly with φ. The existence of chaos in the dynamics
of the suspensions provides an explanation for the loss of correlation in the particle
motions in physical space leading to diffusive behaviour at long times. In fact, we
showed that, in phase space, the system loses memory of its initial state exponentially,
and that the asymptotic separation distance between two initially close trajectories
in the transverse velocity phase space can be accurately estimated assuming that the
two systems are completely uncorrelated.

For individual particles immersed in the suspension we also illustrate the loss of
memory of their instantaneous velocity fluctuations via the transverse velocity auto-
correlation function. For high concentration, φ ∼ 0.40, a screening-type mechanism
is observed and the correlations in particle velocities are lost after a short period of
time of O(1). On the other hand, at the lower concentrations, the transverse particle
motions remain, on average, correlated for a longer period of time. We found fur-
thermore that, for both the transverse components of the velocity, the autocorrelation
function becomes negative at intermediate times (t ∼ 1). We proposed an explanation
for this effect based in the dynamics of two isolated spheres undergoing simple shear,
according to which, since the purely hydrodynamic interaction between two spheres
does not lead to any net lateral displacement, it is a source of negative correlation in
the velocity fluctuations during binary collisions. This explanation is consistent with
the fact that the region within which the velocity autocorrelation function is negative
continues to enlarge with decreasing φ, with the whole autocorrelation function ap-
pearing to converge to an asymptotic distribution dominated by binary interactions
between spheres. We mentioned that the integral of this asymptotic distribution must
vanish on account of its being proportional to the net displacement experienced by a
pair of spheres, and showed that, in fact, the numerical value of the integral of the
autocorrelation function steadily decreases as φ → 0. An important consequence is
that the leading contribution to the diffusivity of the particles as φ→ 0 comes from
an asymptotically negligible contribution to the autocorrelation function. Therefore,
an estimate of the diffusion coefficient, based on the velocity autocorrelation function,
will be highly inaccurate at least for low volume fractions.

At this microscopic level we also computed the velocity probability distribution
function in both lateral directions and observed a transition from an exponential
to a Gaussian distribution as the volume fraction is increased. We proposed that
this transition is due to the dominant role, at high concentrations, of the lubrication
forces, which are essentially two-body random interactions, due to the random spatial
distribution of close neighbours, and therefore would be expected to give rise to a
Gaussian distribution. Unfortunately, thus far, there are no experimental measure-
ments of the probability distribution function of the velocity fluctuations, with which
the results of our numerical simulations could be compared.
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Finally, we investigated the scaling of the diffusion coefficient D at low concentra-
tions as the range of the interparticle force is varied, by setting D equal to one half the
slope of the mean-square displacement in the region of its asymptotic linear growth.
We showed that the effect of the interparticle force is negligible when its range is very
small, i.e. rc = 10−4, and found that both Dy and Dz scale as γφ2a2 for 0.03 < φ < 0.15.
This result corresponds to a diffusive motion arising from collisions between three
spheres simultaneously and, in the case of Dy , is in very good agreement with the
values obtained by Wang et al. (1996), who evaluated the diffusion coefficient by a
completely different procedure, namely by computing the mean-square displacement
of a test sphere over all possible encounters with two other spheres. As mentioned in
the introduction, however, several theoretical calculations (Acrivos et al. 1992; Wang
et al. 1996, 1998; da Cunha & Hinch 1996) rely on two strong assumptions, specifi-
cally: (i) that following each collision the motion of all the colliding spheres becomes
uncorrelated; and, (ii) that the incoming spheres which then interact with the test
sphere are homogeneously distributed in space and arrive with a uniform distribution
in time. Although we have presented a possible cause of the loss of memory in the
chaotic motion of the system in phase space, the validity of the assumption regarding
the homogeneous (in space and time) distribution of colliding spheres remains to be
investigated, and might be the reason for the discrepancy between the numerical and
the theoretical work observed in Dz .

On the other hand, for a much larger range of the interparticle force, rc = 10−1, a
linear dependence of the diffusion coefficient on φ is observed as φ→ 0, which implies
that a significant contribution to the diffusion coefficient emanated from encounters
between two particles. This is consistent with the notion that the interparticle force
qualitatively mimics the effects of surface roughness and other non-hydrodynamic
forces, and reproduces the scaling behaviour found in the theoretical analysis by da
Cunha & Hinch (1996) and in the experimental work by Zarraga & Leighton (1999).
However, the numerical simulations still fail to reproduce the experimental values of
the diffusivity reported by Zarraga & Leighton (1999) by an order of magnitude.
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